
Prior’s Tonk and Proof-Theoretic Harmony

Yoshihiro Maruyama
Oxford University Computing Laboratory

maruyama@cs.ox.ac.uk

http://researchmap.jp/ymaruyama

1 Introduction

Arthur Prior’s logical connective “tonk” [3] has given rise to a number of debates on the nature
of logical constants, making it compelling to explicate criteria to exclude pathological connectives,
such as tonk, from genuine logical constants.

In his seminal paper [2], William Lawvere proposed to understand logical constants as adjoint
functors, giving rise to the discipline of categorical (or categorial) logic and a structural perspective
on proof theory. From such a categorical point of view, logical constants must be defined by
a specific form of bi-directional inference rules determined by adjointness (in a logical context,
adjunctions are equivalent to certain bi-directional rules). The idea of logical constants as adjoints
may thus be regarded as a sort of “harmony” principle in proof-theoretic semantics (a form of
inferentialism in logic), and I shall call it the principle of categorical harmony.

In the present paper, I aim to examine and articulate the scope and limit of the principle of
categorical harmony, in relation to Prior’s tonk and Belnap’s response [1] to it. Tonk and Belnap’s
harmony principle (which I take to consist of both conservativity and uniqueness conditions) have
extensively been discussed; however, the categorical perspective (hopefully) sheds new light on such
old topics (as Lawvere indeed did on several aspects of logic). In the final analysis, I shall conclude
that, although tonk is an adjoint functor once added to a logical system, however, it cannot be
defined as an adjoint functor in a logical system without tonk; hence the principle of categorical
harmony excludes tonk, suggesting that the problem of tonk is the problem of equivocation, and
that there are degrees of paradoxity of logical constants (these would be new insights resulting from
the categorical perspective).

To put it differently in terms of inference rules corresponding to adjunctions, the bi-directional
rule for tonk that represent adjointness is derivable (in two senses; hence “bi-adjointness”) in a
system with tonk, while we cannot define tonk by adding to a system without tonk any bi-directional
rule representing an adjunction (so, the situation is similar to the case of multiplicative connectives
in Girard’s terms). In addition, I shall argue that, essentially due to Freyd’s adjoint functor theorem,
there must be a conflict between Belnap’s conservativity condition and the principle of categorical
harmony; on the other hand, his uniqueness condition is just a natural consequence of the principle
of categorical harmony. The close relationships with the reflection principle that Sambin et al. [4]
introduced for their Basic Logic shall briefly be pointed out as well. I finally give an argument for
the consistency of tonk in terms of proofs rather than provability: tonk is merely inconsistent in
the latter sense, and it actually allows for a rich proof-theoretic structure on identity of proofs.
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2 What is wrong with tonk?

Let us review the concept of adjoint functors in the simple case of preorders. A preorder (L,`L)
consists of a set P with a reflexive and transitive relation `L on L. Especially, the deductive
relations of most logical systems are preorders . It is well known that a preorder can be seen as
a category in which the number of morphisms between fixed two objects in it are at most one.
Then, a functor F : L → L′ between preorders L and L′ is just a monotone map . Now, a
functor F : L → L′ is called left adjoint to G : L′ → L (or G is right adjoint to F ) if and only if
F (ϕ) `L′ ψ ⇔ ϕ `L G(ψ) for any ϕ ∈ L and ψ ∈ L′. A letf or right adjoint of a given functor does
not always exist.

In this formulation, it would already be clear that adjunctions are equivalent to (or defined by)
bi-directional inference rules. Let us look at examples. Suppose L is intuitionistic logic. Define a
diagonal functor ∆ : L→ L× L by ∆(ϕ) = (ϕ,ϕ). Then, the right adjoint of ∆ is ∧ : L× L→ L,
and the left adjoint of ∆ is ∨ : L× L → L. According to the principle of categorical harmony, we
can thus define ∧ and ∨ as the right and left adjoints of ∆. Moreover, Lawvere has shown that
even quantifiers and equality can be defined as adjoint functors, establishing strong foundations of
his idea of logical constants as adjoints.

Let L be a logical system with a deductive relation `L that is reflexive and transitive. And
suppose L contains truth constants 0 and 1, for which 0 ` ϕ and ϕ ` 1 hold for any formula ϕ.
The first observation is that, if L has tonk, then tonk has both left and right adjoints. Recall that
the inferential role of tonk is given by rules A ` AtonkB and AtonkB ` B (see [3, 1]). I mean by
“L has tonk” that L has a connective “tonk” with these rules. We can see tonk as a functor from
L × L to L. Define functors ∆0 : L → L × L and ∆1 : L → L × L as follows: ∆0(ϕ) = (0, 0) and
∆1(ϕ) = (1, 1). We can then prove that ∆0 is the left adjoint of tonk, and that ∆1 is the right
adjoint of tonk. In other words, tonk is the right adjoint of ∆0 and the left adjoint of ∆1; therefore,
tonk is an adjoint functor in two senses, if L is already endowed with tonk.

At the same time, however, this does not mean that the principle of categorical harmony cannot
exclude tonk, a pathological connective we should not have in a “logical” system. Indeed, this is
a problem in the other way around: in order to define tonk in a logical system, the principle of
categorical harmony forces us to add it by requiring the right or left adjoint of some functor, or
equivalently by requiring a bi-directional rule that represents adjointness. Thus, when one wants
to define tonk in a logical system L according to the principle of categorical harmony, the task is:
(1) specify a functor F : L → L × L that has a (right or left) adjoint; (2) prove that the rules
for tonk are derivable in the system L extended with the bi-directional rules corresponding to the
adjunction. As a matter of fact, however, this turns out to be impossible.

Suppose for contradiction that it is possible. Then we have a functor F : L → L × L by (1)
and its right or left adjoint is tonk, which must have both the right adjoint and the left adjoint
by (2) and the argument above. Since category theory tells us a right (left) adjoint of a functor is
unique (if it exists), F must be either ∆0 or ∆1 defined above. Assume F is ∆0; then tonk is the
right adjoint of F . The bi-directional rule corresponding to the adjunction in this case is actually
equivalent to: ϕ `L ψ1tonkψ2 for any formula ϕ,ψ1, ψ2. But this condition is not sufficient to make
the rules for tonk derivable; thus the right adjoint of F cannot be tonk, a contradiction. The case
that F is ∆1 is similar, and the proof is done.

It has thus been shown that tonk cannot be defined as an adjoint functor (of any functor) in
a logical system without tonk, even though tonk is an adjoint functor in a logical system that is
already endowed with tonk. This is a subtle phenomenon, and we have to be careful of what exactly
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the question “Is tonk an adjoint functor?” means. On the other hand, tonk can be defined as a
functor that is a right adjoint of ∆0 and a left adjoint of ∆1 at the same time; thus, tonk is, so to
speak, a “bi-adjoint” functor. Bi-adjointness may be considered a sort of equivocation, and thus
categorical harmony tells us that the problem of tonk is the problem of equivocation.

Building upon this insight into tonk, we can draw an even bigger picture:

right adjoint to left adjoint to
Genuine Paradox itself itself
Disconjunction diagonal ∆ diagonal ∆

Tonk true diagonal ∆0 false diagonal ∆1

Genuine Paradox is a nullary connective R such that ` R if and only if ` ¬R, which turns out
to be right and left adjoint to itself, i.e., it is a “self-adjoint” functor (R means “Russell” with
the Russell paradox in mind). Disconjunction is a functor that is right and left adjoint to ∆,
i.e., it is a “uniformly bi-adjoint” functor. Whereas tonk is right adjoint to one functor, and left
adjoint to another different functor, disconjunction is right and left adjoint to the same one functor.
Uniform bi-adjointness is a stronger condition than bi-adjointness, and obviously, self-adjointness
is the strongest.

We thus have three degrees of paradoxity of logical constants. The paradoxity of tonk and
disconjunction is caused by equivocation, being able to be resolved by “disambiguation”, i.e., by
giving different names to two adjoint functors involved. However, the case of Genuine Paradox is
different, and it cannot be resolved by disambiguation, since a functor that is right (resp. left)
adjoint to itself is, at the same time, left (resp. right) adjoint to itself. This is exactly the reason
why we call it Genuine Paradox.

3 Categorical harmony and other principles

The categorical approach to harmony poses several questions to Belnap’s notion of hamorny. It’s
been well known since Lawvere that the implication ψ → (-) of intuitionistic logic is right adjoint to
the conjunction (-)∧ψ, since it holds that ϕ∧ψ ` χ if and only if ϕ ` ψ → χ. Assume we have the
logical system L with logical constants ∧ and ∨ only, which are defined as the right and left adjoints
of ∆. And suppose we want to add → to L. Of course, this can naturally be done by requiring
the right adjoint of ∧. Now, Freyd’s adjoint functor theorem tells us that any right adjoint functor
preserves limits (e.g., products), and any left adjoint functor preserves colimits (e.g., coproducts).
In the present case, this implies that ∧ preserves ∨; in other words, ∧ distributes over ∨. Thus,
defining → according to categorical harmony is not conservative over the original system L, since
the bi-directional rules for ∧ and ∨ do not imply the distributivity. This non-conservativity is very
natural form a category-theoretical point of view, and seems to be in harmony with the Quinean,
holistic theory of meaning, even though it violates Belnap’s conservativity condition. Anyway, we
may at least say that the principle of categorical harmony, or Lawvere’s idea of logical constants
as adjoints is in conflict with Belnap’s notion of harmony.

In the process of the proof above, we have encountered the fact that an adjoint of a functor is
uniquely determined. It actually implies that Belnap’s uniqueness condition automatically holds if
we define a logical constant according to the principle of categorical harmony. Thus, the uniqueness
condition is inherently present in the concept of categorical harmony. It should be mentioned that,
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as a matter of fact, exponentials in linear logic do not have the uniqueness property. At the same
time, however, we could doubt that exponentials are proper logical constants.

A relevant problem for categorical harmony is that multiplicative connectives in Graird’s sense
cannot be defined as adjoint functors in an “intrinsic” manner. This involves a tension between
Cartesian and monoidal structures in category theory. Categorically speaking, multiplicatives cor-
respond to monoidal structures (e.g., monoidal product), while additive connectives correspond to
Cartesian structures (e.g., categorical product). In general, monoidal structures can only be given
from “outside” a category; the same category can have dif and only iferent monoidal structures.
Since adjunctions are determined via their universal properties “inside” a category, monoidal struc-
tures on a category cannot be defined as adjoint functors unless we already have some monoidal
structures on it. But, once we have a monoidal structure, we can define further monoidal structures
on it. For example, let us consider the additive fragment of linear logic, denoted by ALL; then we
cannot define the multiplicative conjunction as an adjoint functor of a functor derived from the
additive structue. Once we have a multiplicative conjunction in ALL, however, we can define a
multiplicative implication as the right adjoint of it; then, the multiplicative conjunction becomes
an adjoint functor as well, since it is the left adjoint of the implication. This is a subtlety similar to
the case of tonk. And as in the case of exponentials we could doubt that multiplicative connectives
are truly logical constants; linear logic is regarded by Girard not as a logic on its own right but
as a perspective to have a better understanding of classical and intuitionistic logics. The last two
points are thus not necessarily disadvantages of the categorical approach to harmony.

At the same time, however, the worries above can also be resolved by extending the concept
of categorical harmony. Actually, the reflection principle of Sambin et al. is implicitly doing
this. In the case of additives, their definitional equivalences for logical constants are exactly the
bi-directional rules induced by the corresponding adjunctions. In addition, they have definitional
equivalences for multiplicatives, and thus give a proper extension of the scope of the principle of
categorical harmony. They do not mention anything categorical, probably being unaware of the
connection with Lawvere’s idea of logical constants as adjoints. The relationships between the re-
flection principle and the principle of categorical harmony would thus deserve further investigation.

4 Conclusions

I have proposed and examined the categorical approach to harmony, building upon Lawvere’s idea
of logical constants as adjoints. The main focus of analysis was on Prior’s logical connective “tonk”
in the light of the principle of categorical harmony.

Simply speaking, it has finally turned out that tonk is an adjoint functor in a logical system
with tonk, and that tonk is not an adjoint functor in a logical system without tonk. Apart from
the validity of the concept of categorical harmony, these observations on tonk seem to be worth
knowing on their own rights. Furthermore, categorical harmony has allowed us to argue that what
is wrong with tonk is equivocation, on the ground of the fact that tonk is a “bi-adjoint” functor.

Deepening this insight further, we have led to the concept of degrees of paradoxity:

right adjoint to left adjoint to
Genuine Paradox itself itself
Disconjunction diagonal ∆ diagonal ∆

Tonk true diagonal ∆0 false diagonal ∆1
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The last two are caused by equivocation, and can be made innocuous by discriminating right and
left adjonits properly. Genuine Paradox is not so, since self-adjoitness can be given by a single
adjunction (and hence no problem of equivocation on Genuine Paradox).

I also attempted to clarify the relationships of categorical harmony with Belnap’s harmony and
with the reflection principle by Sambin et al. There is a sharp conflict on conservativity between
categorical harmony and Belnap’s. The reflection principle is, in a certain sense, an extension of
Lawvere’s idea of logical constants as adjoints to the case of multiplicative connectives.

Finally, I would like to give one further remark on the paradoxity of tonk which tells us even
more subtleties on Prior’s tonk. Tonk trivialises the deductive relations of standard logical systems,
and so it is paradoxical in that sense. At the same time, however, the identity of proofs does not
necessarily trivialise even in the presense of tonk (in standard logical systems). This can indeed
be proven, for example, by constructing category-theoretical models of tonk via categories with
so-called biproducts. Thus, tonk perfectly makes sense in terms of identity of proofs, and in this
sense, tonk is not paradoxical at all.

In general, there are two kinds of inconsistency in logic: one is that in terms of logical conse-
quence (i.e., ϕ ` ψ for any ϕ,ψ, which usually implies ` ϕ for any ϕ), and the other is that in terms
of identity of proofs (i.e., π = π′ for any proofs π, π′ from one formula to another, where equality
= is defined by the associated normalisation or cut elimination procedure of logic concerned). The
latter is a sort of type-theoretical inconsistency (recall that proofs in logic are terms or “programs”
in type theory according to the Curry-Howard isomorphism, and equality between terms is the
main focus of type theory).

Classical logic is consistent in the former sense, and inconsistent in the latter sense (for the latter
inconsistency, refer to the so-called Lafont’s critical pair, which gives a proof-theoretic account of the
inconsistency, or the Joyal’s lemma, which gives a categorical account). You may think consistency
in terms of proofs implies consistency in terms of deducibility, but actually it is not the case, as
tonk is inconsistent in terms of deducibility, and consistent in terms of proofs. The latter facet of
tonk seems to have remained untouched so far; however, it would deserve serious attention.
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